Scientist of the Month

July SOTM: Sui Huang

by Danielle Fanslow

Dr. Sui Huang’s role model is Barbara McClintock, the Nobel Laureate who discovered transposable elements. In many ways, the two scientists are alike. Sui, like McClintock, has a fierce love and curiosity for science. She will often run into my lab with a grin on her face exclaiming about the latest piece of data that excites her. Sui is also an innovative scientist. Her ideas spark the imagination and push the limits of how we look at biology. Like McClintock, she is also persistent. Through the climate of tight funding, Sui continues to stay true to her honest pursuit of knowledge. As Sui serves in her current position as Associate Professor in the Cell and Molecular Biology Department at the Northwestern University Feinberg School of Medicine, she continues her joyful search for nuclear structures and functions in cancer cells and beyond.

Before Sui began her career in cancer biology research, she was trained to become physician at Fudan Medical School in China. As a medical doctor, Sui felt that she could not help the patients who most needed treatment because of the deficit of biological understanding of many diseases, including cancer. After medical school, Sui decided to change careers and become a cancer researcher. There she could contribute to the biological understanding of cancer and develop treatments that would potentially help more people than she could as a physician. She moved to the United States and got her PhD from Rutgers University. Subsequently, she did a postdoctoral fellowship at Cold Spring Harbor Laboratories, where she focused on studying cancer cells. There she took an innovative approach of searching for unique structural markers of cancer cells, rather than single mutated genes. That’s when she discovered the perinucleolar compartment (PNC), a nuclear body that lies at the periphery of the nucleolus, forming uniquely in metastatic cancer cells.

Sui continues her work to understand the biology of the PNC at Northwestern University. She understands that cancer is a complex disease that requires a complex solution, and that thinking outside of the box can lead to some of the most important and impactful biological discoveries. She and her colleagues found that the PNC could be used as a marker for the metastatic behavior, the major cause of death for cancer. Her team developed a screen for compounds that selectively remove the marker, thus removing or changing the metastatic capable cancer cells with minimal impact on normal cells. Sui is encouraged about the promising anti-metastatic efficacy of her compounds and she hopes to advance them into clinical trials.

Sui is also passionate about giving back to the community. She does quite a bit volunteer work for primary and secondary school science fairs. She also visits classrooms to demonstrate microscopy to children by having them look at their own cheek cells. Additionally, Sui teaches graduate level courses in cell biology and her enthusiasm for science is most evident in her lectures and discussions.

Sui loves science, yet she often feels discouraged by the current system of funding for research. She feels that the most creative and innovative ideas often get overlooked for conventional projects and trendy hypotheses. “I think that people like Barbara McClintock would not be able to survive in today’s system.” She feels that tight funding sometimes favors “people who play the game right, people who follow the rules, rather than follow their science.” She worries that there is little consideration that novel ideas may take longer to develop than the expectation of the funding mechanisms. Gender plays a role in some of the struggles she has faced. She feels women like her, who take low-key ways of explaining their research in meetings and proposals, are sometimes disregarded over male counterparts who present with more showmanship and salesmanship. However, she believes that if scientists of all genders are honest to themselves and committed to their work, over time they could push through the system and achieve their goals.

Throughout her career, Sui’s family motivates her to work harder. Everyday she strives to set an example for her daughter, ensuring her that she can do anything she wants to in life. She will often work alongside her daughter as she does her homework, encouraging hard work by example. Sui’s abundant excitement for her work is contagious to her family, friends and colleagues. She continues to inspire those around her to stay excited and stay positive, even if the science they are pursuing is unconventional and challenging.

Wednesday, July 5th, 2017 Scientist of the Month Comments Off on July SOTM: Sui Huang

June SOTM: Jian Cao

by Puikei Cheng

If you’re reading this article, whether on a screen or in print, you are using a product of manufacturing. Manufacturing converts raw materials into consumer goods—and due to mass production, more consumer goods are manufactured than ever before.

While mass production is cheap, there is growing demand for products that are complex, one-of-a-kind, or require special processing. These products include specialized equipment such as turbines, aircraft parts, and patient-specific implants. With the proliferation of interconnected electronic devices, manufacturing research has grown extremely sophisticated, multidisciplinary, and collaborative. At the forefront of this research is Professor Jian Cao.

Dr. Jian Cao is the Cardiss Collins Professor of Mechanical Engineering at Northwestern University in Evanston, Illinois. She co-directs the Advanced Manufacturing Processes Laboratory and is the founding director of the Northwestern Initiative for Manufacturing Science and Innovation. Moreover, she has been recognized through numerous awards, published over a hundred journal articles, and holds over a dozen patents. She was first woman president of the North American Manufacturing Research Institute since its founding over 30 years ago. Last year, she became the first woman to win the prestigious SME Frederick W. Taylor Research Medal for her contributions to the field of manufacturing.


Manufacturing as integration of knowledge

Dr. Cao first became interested in manufacturing as a student at Shanghai JiaoTong University (SJTU). She was drawn to the idea of manufacturing as the “integration of many different fields.” As she explains, “A process by itself is not going to fly until it’s in the system domain.” She graduated from SJTU with a double major in controls and materials science/engineering, then went on to earn a PhD at MIT in solid mechanics.

More than 20 years later, her research contributions cover topics as wide-ranging as 3D printing, carbon fiber composites processing, sheet metal forming, and surface texturing. Dr. Cao’s research pushes the boundaries of these advanced manufacturing techniques to reduce cost and waste, increase efficiency, improve process flexibility, and boost product quality.

Dr. Cao advocates for breadth and perspective in research. She has worked in all three sectors of the “Triple Helix”: academia, industry, and government agency. Speaking about her time as a program director at the National Science Foundation, she says, “You’re taking yourself away from being fully embedded in your own lab and looking over a much broader landscape. I visited many different labs, domestic and international, sat on many different panels and workshops, and worked with people to come up with something new—new ideas and new directions for the manufacturing community.”

Now in her fifth year as Associate Vice President for Research at Northwestern, Dr. Cao uses her perspective to influence university operations. “As a researcher, you know what you need—and the office of research wants to know how to support researchers.” She oversees university-wide research initiatives regarding Northwestern’s core facilities, including machine shops and software licenses.

Dr. Cao is also an entrepreneur. Her start-up, Scimplicity LLC, aims to bring rapid, low-volume sheet metal forming to the market via an advanced manufacturing process known as incremental forming. Compared to traditional sheet metal forming processes, incremental forming is flexible, cheap, and fast for low volume production—perfect for specialized equipment.

According to Dr. Cao, Scimplicity is a combination of the “sci” in science and the idea of “simplicity” as a design objective. “Development usually moves from the simple to the complex. But for everyone to be able to use it, you have to simplify the complex knowledge.” Scimplicity does this by condensing cutting-edge, multidisciplinary manufacturing technology into a more user-friendly interface. “The whole concept is to make it into a simple system that people can use.”


Manufacturing as a collaborative effort

Around the lab, Dr. Cao is known for her ability to multitask. On airplanes and car rides you may find her editing manuscripts, writing proposals, and calling into teleconferences—sometimes all at once. Outside the lab, she is a proud mother of two Northwestern engineering undergraduates, a junior and an incoming freshman. With her busy schedule, she still manages to mentor her diverse crew of twenty-plus post-docs, graduate students, and undergrads.

Cooperation is key in Dr. Cao’s group. Her students often work together on multidisciplinary teams assembled for each project. For example, about a quarter of her students have spent time in the last two years either designing, building, or testing their latest metal 3D printer system. Such a project demands a variety of skills and fields of knowledge.

Dr. Cao takes a similar approach with her collaborators, who span the globe. Her strong ties to the academia-industry-government “Triple Helix” aligns her with experts in experimental design, machine design, controls, simulations, materials science, imaging, and more. She has worked with companies both big and small, including Ford, Boeing, Baxter, General Electric, and Siemens. With her academic and industrial partners, she has secured millions of dollars in grants to spur innovative research.

At the core, Dr. Cao believes her achievements came about because she does what she enjoys. “I think you really have to find your own passion. You have probably heard a lot of people say that you have to find your own passion. But it is true. If you don’t like what you do, then don’t do it. Life is short, find something interesting—and work on it.”

To learn more about Professor Jian Cao’s research, visit

Monday, June 19th, 2017 Scientist of the Month Comments Off on June SOTM: Jian Cao

March SOTM: Jocelyn Malamy

by Ittai Eres

I still remember the first time I encountered Dr. Jocelyn Malamy, Associate Professor in the Department of Molecular Genetics and Cell Biology at the University of Chicago. She was giving the final set of lectures in one of the toughest classes I took my first year of graduate school. Immediately, I was struck by her enthusiasm and vigor, not only for plant biology, but also for the task at hand—teaching. Jocelyn is a past recipient of the Llewellyn John and Harriet Manchester Quantrell Award for Excellence in Undergraduate Teaching, which is no surprise for anyone who’s ever taken one of her classes. She feels that University of Chicago students are a “really gratifying group to work with, because you provide them good exciting things, and then they become excited.” This attitude was definitely reflected in her lectures for that course, which consistently engaged the audience in a way that many educators strive for their whole careers.

Small wonder, then, that she was recently promoted to become the Master of the Biological Sciences Collegiate Division (BSCD). In this new administrative role, Jocelyn has been coming up with ways to introduce new opportunities, new curricula, and new courses to students interested in the life sciences. As a result, a new set of research intensive courses will be offered for undergraduates at the Marine Biological Laboratory (MBL) at Wood’s Hole this year in the three weeks preceding the fall quarter.

You might expect that taking on such a large leadership role would cause one to put other professional goals on hold for a period of time, but that isn’t the case here. Jocelyn still runs her research lab, as well, and has big goals to expand into and publish in an exciting new direction: jellyfish. Like plants, jellyfish have a tremendous regenerative capacity—take a piece of either one, and it’s capable of growing into a whole new organism. As Jocelyn herself describes, “you cut them into four pieces, and you get four jellyfish!” Identifying the common elements between such creatures that allow them to regenerate could be a tremendous boon for human health.

Of course, expanding the scope and size of a research lab isn’t easy, especially in today’s funding climate. One thing Jocelyn laments is the constant fight for funding. The need to constantly sell your projects, and to market them to those who lack some interest in basic science questions, can be incredibly frustrating. Not to be deterred, she still searches zealously for those “a-ha” moments when results come through and things finally click. Unlike many other professors, Jocelyn is not content to stay in the office and hear about results from her students. For her, the best way to process a scientific result is to be present for the process that yields it, and hence she can frequently be found working at the bench, physically doing the research. There was certainly a time in her career when a variety of factors conspired to prevent this from being a possibility. Faculty members’ offices are placed outside of the lab, and administrative and teaching demands make it difficult to find the time to do actual science. In her own words: “7 years, I didn’t pick up a pipette, what was I thinking? It was so, so, so wrong, and maybe it works for some people, but it didn’t work for me.”

Jocelyn has also faced more gender-specific challenges during the course of her career, though she did not ever feel she was discriminated against as a woman. “Women,” she says, “are very well-represented in the biological sciences, and almost particularly in plant biology.” However, there is also typically a difference in how men and women approach professional situations, especially ones where you need to fight for yourself or for a certain goal. According to her, often a “typical female ‘softer’ approach leads to less success,” and that, if a woman wants to be more assertive, she often must worry about “trying to hit that right tone…constantly monitoring yourself.” Of course, professional women often have the added challenge of being a scientist while also being a mom. The mother of a young child herself, Jocelyn notes that “having children is a big hit on your productivity, that often affects women much more than it does men.”

Although these different challenges make it harder for women to succeed professionally, they certainly haven’t stopped Jocelyn. She began to do research in her undergrad years at Tufts University, where she fell in love with plant biology before moving on to Rutgers for her Ph.D. and then to New York University for a post-doc. Nowadays, we’re lucky to have her here at the University of Chicago, making new inroads into regeneration with jellyfish in her lab and creating engaging educational content as Master of the BSCD. Her advice for students hoping to be as successful? “Go with something you’re excited about, but also factor practicality into it a little bit.”

Wednesday, March 1st, 2017 Scientist of the Month Comments Off on March SOTM: Jocelyn Malamy

February SOTM: Laura Thorp

by Brittany M. Wilson

Dr. Laura Thorp, Physical Therapist turned Anatomist and now mom of four boys under the age of 5, is highly regarded as an educator by her students. In fact, she has been awarded on several occasions for Excellence in Teaching and having been one of her students, I can personally endorse her merit for these awards. I first met Dr. Thorp at Rush University Medical Center when she was an Assistant Professor of Anatomy and Cell Biology. As an aspiring professor of anatomy myself, I have always viewed Dr. Thorp as an important mentor and role model.

“Make it make sense,” I remember her saying this many times as she delivered various gross anatomy or neuroanatomy lectures. I believe the phrase originated from her undergraduate anatomy professor at the University of Scranton, Dr. Gary Mattingly, who Thorp regards as an influential mentor in her pursuit to teach anatomy herself. I often find myself repeating this phrase back to students I am teaching or even to myself as I study or read scientific literature. Mentorships often seem to work this way, with idioms and ideas being passed on to mentees like genes are passed on through a family tree.

Dr. Thorp’s excellence in teaching is likely related to her passion for the subject of human anatomy and openness to evolve and grow in each new experience. As of July 2015, Dr. Thorp assumed a new position as Clinical Associate Professor in the Department of Physical Therapy at the University of Illinois at Chicago (UIC). Given her initial training as a physical therapist, teaching anatomy at a physical therapy school was always a goal of hers. It took about 13 years to finally make that goal a reality but Thorp says, “I wouldn’t change anything about how I went through it because I learned so much.”

To say in hindsight that she’s learned so much is an understatement. Dr. Thorp found out she was pregnant with triplets shortly after accepting her new position at UIC. With another little one at home already, balancing family life with work became an exciting new challenge for Thorp and her husband who is a physician in the Chicagoland area. “I find balance by knowing what’s important to me,” Dr. Thorp mentioned when discussing her daily schedule. She also acknowledged the importance of asking for what you need and utilizing the people and resources around you. She continued, “It’s a lot. There’s days where I’m very overwhelmed but I’m excited that I have four boys who will get to see a mom that loves her job.”

While she was teaching at Rush University, Dr. Thorp participated in and chaired many advisory and curriculum and evaluation committees, primarily within the medical college. Her experience with implementing curriculum changes at Rush University is now invaluable as she sits on similar curriculum committees at UIC and is able to offer pragmatic insight to guide the process. Thorp is also currently participating in a teaching scholars mentoring program through UIC’s Center for the Advancement of Teaching-Learning Communities where she hopes to learn how to better the courses she teaches and how to improve the assessment of teaching outcomes.

The success of her students is something Thorp highlights as one of the most rewarding aspects of teaching. She said, “Anatomy is challenging and it’s not for everyone and seeing students who are working really hard who ultimately get it is really gratifying.” She also acknowledges her students’ respect and appreciation for cadaver dissection. While new technology seems to be complementing traditional cadaveric dissection well, empirical evidence has suggested that the experience of learning human anatomy through cadaver dissection is indispensable. In fact, bad press about body donation is a real concern for anatomists like Thorp who rely on donors to supply cadavers for the medical and professional schools in the area.

As a woman in science and now a mom of four boys, Dr. Thorp has learned to know when to ask for help. She said, “There’s no way I can do this all on my own. You have a lot of people around you in science and in life who want to help and you need to seize the opportunities to take help where they present themselves or find them if they’re not presenting themselves.”

Before Dr. Thorp left Rush University for UIC, her doctoral advisor, Dr. Rick Sumner, who happens to be my adviser and also Chairman of the Department of Anatomy and Cell Biology at Rush, gave her a framed notebook sheet. Written on it were notes about her goals from their first meeting when she started as a student at Rush, “Teach at a physical therapy school.” That was in 2002. Over a decade later that goal has come to fruition for Thorp. She said, “I was lucky, but it’s not just about luck. You have to ask for what you need and you can ask for what you need without apologizing for it.”

Creating the career you want for yourself will always take time, but the time will pass anyway. Passion for what you want to do, clear communication with those around you, and an openness to learn in each new experience are all part of a recipe for success that has definitely paid off for Dr. Laura Thorp.

Thursday, February 9th, 2017 Scientist of the Month Comments Off on February SOTM: Laura Thorp

January SOTM: Julia Kalow

by Emma Vander Ende

headshot_0915-2If you pause and consider your surroundings, you will find that a type of molecule, called a polymer, surrounds you. Polymers are large molecules that are made up of smaller molecules, called monomers. Monomers link together to form a polymer much in the same way that a necklace is made up of beads (discrete, repeating units).

While polymers occur in nature, ranging from natural rubber and silk, to even our DNA, chemists have also synthesized a multitude of synthetic polymers. These include plastics, which pervade our modern world. Polymers are a fascinating class of molecule in part because they offer the potential for a high degree of variety to form functional materials. Chemists can tailor the monomer chemistry to create polymers that have exciting futuristic functions, from conductive molecular wires to “self-healing” polymers that make durable materials.

One such chemist studying polymer chemistry is the most recent hire in the Chemistry Department at Northwestern University: Assistant Professor Julia Kalow. Her research focuses on studying how information about polymer reactivity can be used to tailor the properties of polymers and other soft materials. Research areas that currently interest her include new ways to make conjugated polymers. These polymers contain extended electron networks, and Kalow is interested in how they interact with light inside a magnetic field. She also makes polymers for biomaterials applications – namely, artificial mimics of the extracellular matrix and sophisticated 3D cell culture materials. These materials, she hopes, will help to address complex cell biology problems by advancing biologists’ capabilities to study cells.

Her interest in pursuing an academic career began between her junior and senior years of college at Columbia University, where she started undergraduate research in the Leighton Group after her freshman year. She took a medicinal chemistry internship with Merck Research Laboratories, where her supervisor placed her on a project resembling those in academia. She decided to pursue a PhD in chemistry and the intellectual freedom that academia affords so that she could lead her own projects and follow her own ideas.

As a new assistant professor, she is in the process of establishing her lab and recruiting PhD students to advise and mentor in research. Mentoring students ranks high in Kalow’s list of priorities. She herself earned her PhD (as an NSF GRFP fellow studying asymmetric catalysis) from an assistant professor, Professor Abigail Doyle at Princeton University, and treasures that experience. She and Doyle had a close mentoring relationship, and would frequently talk through her data and results, but Kalow also felt that she had ownership over her research. Towards the end of her PhD, her adviser encouraged her to independently pursue a mechanistic study. “When everything came together on that project, it was very rewarding,” Kalow said of the experience.

Following her PhD, she became a Ruth L. Kirschstein Postdoctoral Fellow at MIT, researching different kinds of polymers with Professor Timothy Swager. She chose the Swager Group in part because of Swager’s success with startup companies. Her experiences researching and collaborating in the challenging intellectual environment of MIT further inspired her to become a professor herself.

Looking to the future, Kalow hopes first to establish her new students in their research and develop reactions and new materials that might change the way that the synthetic polymer community thinks about chemical reactivity. She hopes to form collaborations with other professors at Northwestern, a highly interdisciplinary research institution, to identify particularly useful applications for which her new polymers could fill a need. She is also interested in the possibility of starting a company someday, noting that Northwestern is a great place for innovations and forming startups.


Monday, January 2nd, 2017 Scientist of the Month Comments Off on January SOTM: Julia Kalow

December SOTM: Anna Spagnoli

by Brittany M. Wilson

anna-spagnoli“Perseverance is something that pays back,” Dr. Anna Spagnoli told me a little after noon on a Monday in Chicago. Dr. Spagnoli currently holds the positions of Professor of Pediatrics and Women’s Board Chair of Pediatrics at Rush Children’s Hospital at Rush University Medical Center. Dr. Spagnoli seemed particularly busy as she was preparing for a visiting professorship in China later in the week.

Dr. Spagnoli graduated Cum Laude from the University of Rome Tor Vergata School of Medicine in Italy. After completing residency training in Pediatrics in Rome, she was granted a Fulbright Scholarship to work in the Division of Pediatric Endocrinology at Stanford University in California. She began participating in pediatric research during her residency training in Italy and after her experience at Stanford, moved to the US to practice medicine and continue her research efforts.

In order to transition her medical practice to the US, Dr. Spagnoli needed to complete an additional residency training program here. After completing her second residency training she secured an assistant professorship in the Department of Pediatrics, Division of Pediatric Endocrinology, at Oregon Health and Science University in Portland. While she was still completing her second residency training program, Dr. Spagnoli began to serve as a mentor.

Dr. Spagnoli truly believes in the importance of mentoring as she acknowledges several of her mentors as having a hand in many of her successes. She said, “Mentoring is probably the most important thing for me in my career.” She has mentored nearly 30 students or residents to date, many of whom have been women and many of whom now hold faculty positions both nationally and internationally. Dr. Spagnoli continued, “[Mentoring] is a combination of being inspired and being understood. I think the great mentors are the ones that can work to understand you for who you are and how different you are from them. This is very important.”

When asked about the most frustrating part of her work, Dr. Spagnoli replied, “that there are only 24 hours in the day.” Dr. Spagnoli currently oversees over 100 physicians, staff recruitment and education, and research operations for Rush University Children’s Hospital, in addition to several other roles. When you speak with her it becomes clear that she deeply values the service she can provide to her patients and also her mentees. She has a long track record of aiding in her mentees success as her current doctoral student recently earned a highly competitive Ruth L. Kirschstein National Research Service Award through the National Institutes of Health (NIH).

Dr. Spagnoli also contributes through service on many NIH and foundation grant review study sections and she served as permanent member of the NIH Skeletal Biology Development and Disease Study Section from 2012 to 2016. She maintains a thriving research laboratory with two currently active R01 grants from the NIH. Her laboratory facilitates interdisciplinary collaboration between PhD scientists and medical doctors in order to advance the field of tissue regeneration. In fact, Dr. Spagnoli and her colleagues have published over 60 peer-reviewed manuscripts in journals such as Developmental Cell, Endocrinology, and the Journal of Bone and Mineral Research. In addition, Dr. Spagnoli delivers many teaching and research seminars to her trainees at Rush University and at academic institutions across the country and throughout the world. She also participates on committees for professional societies including the American Society of Bone and Mineral Research, among others.

“Seeing something that is beyond daily life,” it is these kinds of visions, Dr. Spagnoli says, help keep her on track. She knows that science and medicine are much larger than herself. She continued, “If this is only for me this is never going to work because the difficulties you are going to find they are so many that you lose yourself if you only focus on yourself. So I always think, whenever I need to do something big, I think about who we are serving.”

Dr. Spagnoli was thrilled to offer advice to women who are pursuing or who are interested in pursuing science or medicine. She believes it is important to acknowledge unconscious biases and the fact that our brains are wired to look for similarities. Dr. Spagnoli encourages us not to justify these biases but rather to go beyond them. “Some people do not understand and this can lead to anxiety. Try not to get upset, see the challenge and help them understand. Be patient and make it clear how you can contribute to a particular situation.”

Dr. Anna Spagnoli’s overarching goal to understand people and to serve them in any way possible has without doubt driven her success in science and medicine. She concluded with this, “Service is inspiration. I wake up and say, ‘okay, who are you going to make a difference for today’.” Dr. Spagnoli is proof that perseverance most definitely pays back, especially when your work includes service for others.


Thursday, December 1st, 2016 Scientist of the Month Comments Off on December SOTM: Anna Spagnoli

October SOTM: Christiane Carney

by Liz Bajema

carneyIf you find Christiane Carney on a typical day, she’s likely to be training medical practitioners, brushing up on scientific literature, or interacting with key opinion leaders in women’s health. Christiane is a medical science liaison (MSL), an increasingly popular profession among PhD scientists. MSLs typically work for pharmaceutical companies, acting as a scientific resource for the medical community. In summary, “You are a scientific expert on your company’s products, answering scientific and clinical questions for doctors and nurses.” This requires in-depth knowledge of a particular therapeutic area, in addition to strong verbal communication skills. As for Christiane, her specialty is women’s health. She has long been passionate about her field, and finds that being an MSL allows her to make a unique and tangible impact on patient lives and outcomes.

Christiane’s career path was strictly academic prior to becoming an MSL. As a chemistry undergraduate at Portland State University, she found excellent mentorship in the lab of Prof. Mark Woods. That experience drove her to pursue a PhD in chemistry at Northwestern University, where she worked to develop MRI contrast agents for cell tracking and labeling. It was toward the end of her graduate career that Christiane first became interested in becoming an MSL. The job was a perfect fit for her, since she was interested in stepping away from lab work, but also had a keen desire to put her PhD to good use.

However, being an MSL requires not only scientific knowledge, but also a strong understanding of clinical work. Since her graduate work leaned toward basic science research, Christiane obtained a postdoctoral position that was more clinical in nature. This postdoctoral role in the University of Chicago’s OB-GYN department was a crucial, transitional step for her. It allowed her to gain insight into clinical research, as well as expertise in women’s health. After six months of working at her postdoc, she began applying to MSL jobs.

The only downside of seeking an MSL job is that the field can be quite challenging to break into. Especially as a PhD, Christiane says, “Getting your first MSL job is always hardest; it’s much easier to switch between MSL roles from there.” Many MSL roles have historically been held by PharmD degree holders. However, Christiane feels that her PhD and postdoctoral experience prepared her exceedingly well for her job. In fact, she was offered her current job at Bayer only 2 months into the job search process. For graduate students considering a career as an MSL, Christiane recommends networking with MSLs at conferences and joining the MSL society. It’s also important to match your PhD skills to a particular area of expertise. Since MSLs specialize in a particular field (oncology, cardiology, or dermatology, for instance), it’s good to leverage your PhD skills into one of those roles.

For Christiane, being an MSL includes all of her favorite things about PhD work: analyzing data, looking for trends, and talking with key opinion leaders about science. Thus, she travels 2-3 days each week to meet with doctors in other states and go to relevant conferences. When she’s not traveling, she’s working from home to prepare for presentations and meetings, as well as keep up with relevant scientific literature. For this reason, she emphasizes that a successful MSL must be very self-motivated. Although it’s a busy job, Christiane loves it first and foremost because it’s a job that has an impact. Although MSLs never give clinical advice, they have the “big picture” view to identify and address important trends. Because they work so closely with doctors and nurses, they can teach and inform them on how to improve outcomes. Christiane remembers a time early in her MSL career when she trained practitioners who had no formal training on IUD insertion on how to do the procedure. This directly led to their patients having more contraceptive choices. That’s the sort of thing that makes her job rewarding.

Tags: ,

Saturday, October 1st, 2016 Community, Scientist of the Month Comments Off on October SOTM: Christiane Carney

June SOTM: Kelly Fahrbach

By Katarina Kotnik Halavaty, PhD

FahrbachProfileFor more than a decade Kelly Fahrbach successfully paved her biomedical research career in academic settings – all went well, but something was missing. At the time, Kelly was a young research assistant professor and admitted that she needed more variety, more dynamic in her everyday schedule, which pushed her to switch her professional path. She now enjoys working as a medical writer at Stem Scientific that is part of Ashfield Healthcare Communications.

“My whole life I was interested in biology,” she says. In her first year of undergraduate school she didn’t know which direction in biology she wanted to go. Kelly was on her search to find the right professional path, and she therefore applied for a summer internship at Loyola University in Maywood, Illinois. As a laboratory technician she, for the first time, was exposed to virology research. “I really liked virology but I also became interested in cancer research.” She wanted to learn more about cancer virology, and so she decided to go to graduate school. She joined Professor Kathleen Rundell’s laboratory at Northwestern University where she had an opportunity to mesh cancer research with virology. Kelly was enjoying science, but at the same time she was also thinking about her future plans. “At first I thought I wanted to become a teacher for undergraduate students, and I therefore looked into gaining some teaching experience.” During her last year of graduate training she began part-time lecturing at National-Louis University in Chicago. In 2004 Kelly graduated and obtained her Ph.D. At the time she wasn’t certain whether to proceed with teaching or not. “I felt I was still more interested in hands-on science than in teaching, and I therefore decided to do a short postdoctoral training.” After having several interviews for a postdoctoral position, she chose to join Professor Thomas Hope’s laboratory at Northwestern University to learn about HIV. “This was the only lab that didn’t do any cancer biology among all I applied for; however it offered a clinically relevant research which I found more interesting than a basic science lab.” During her postdoctoral training in the Hope lab Kelly continued to teach as a part time adjunct biology instructor. After three years of lecturing she realized that she wasn’t ready to go into teaching full time. She liked science, but she did not want to become a principal investigator. Kelly, again, was on her search what to do next. Around that time her mentor, Professor Thomas Hope approached her and suggested that she become a junior faculty member. “This was a chance that I did not want to miss! It opened up new opportunities for me to apply for several grants and take on a leadership role.”

Kelly was promoted to a research assistant professor. “It gave me some time to enjoy research and being comfortable with having a family. Tom was very supportive and I was able to succeed as a working mom in an encouraging environment with a highest quality of research being performed”, she explains. Kelly applied for several grants, gained a lot of new research experiences and became an expert in microscopy. In her new role she also took on additional responsibilities such as mentoring graduate students and postdoctoral researchers, co-implementing the lab website, and promoting methods to improve safety, internal communication, and data reporting in the laboratory. She joined the Young Investigator Editorial Review Board of AIDS Research and Human Retroviruses Journal to peer review manuscripts in the HIV/AIDS research field. Professionally Kelly was in full bloom! She published three first-author articles and co-authored a publication in peer reviewed journals. Despite her fruitful career in an academic environment four years later Kelly was reconsidering what she wanted to do in her future. She felt that she was working hard but she didn’t have as much to show as she would like to have. “I wanted to see more results at the end of my day; the outcome of my daily experimental work did not satisfy me any longer,” she says.

Kelly began planning to leave the bench: “I started exploring alternative Ph.D. careers.” Listening to her inner voice she knew that she loved working in a team and managing projects. While networking with people from different backgrounds she came across the medical communications field. “This was a breakthrough!” she says. “I always enjoyed analyzing data, writing grants, articles, abstracts, safety protocols… but not planning or carrying out the same experiments day after day” she further explains. Kelly applied for numerous positions including writing, safety and project management, and communication jobs. In the end, she landed an associate medical writer position at Ashfield Healthcare Communications. “I am very happy that I made this change!” In her new role Kelly writes manuscripts and reviews for peer review. She develops abstracts, posters, and slide presentations for international congresses along with developing strategic documents for pharmaceutical companies. “I love the variety! I no longer need to repeat same things again and again as I had to do at the bench. Now, the pace is faster than before, and I am learning new things every day! This gives a lot of dynamic to my everyday work.”

Tailoring her professional path according to her needs and wishes was a long term process. Kelly admits that transitioning from academia to industry was not easy: “Getting my foot in the door was the hardest.” Working with clients, learning new terminology associated with the field, and becoming familiar with new protocols could sometimes be a bit challenging. “The Hope lab prepared me well for my next step – even for my new professional adventure,” she says. “Tom gave me several opportunities to play different roles inside the lab and gain a wealth of knowledge.” Kelly presented at conference calls, communicated with IRB safety and ethics approval committees and mentored graduate students, postdoctoral candidates, and technicians. Looking back, she is proud of all her accomplishments and academic achievements!

As a successful career woman, Kelly established a great balance between her work and her family life. She has two daughters who keep her busy, but also motivated. Kelly strives to spend time with her family and loves going camping and fishing with her daughters and her husband, enjoys baking, running, and has recently taken up painting and trying to learn the violin. It gives her new energy to work hard in her profession. Kelly notes, “I am incredibly fortunate! Having a supportive network at home and all of my past experiences, many of those in the Hope lab, were a major help in getting me where I am today. Now at my new job, the team I work with is fantastic! My co-workers are also very supportive.” With all her positive experience Kelly would like to share her encouraging thoughts with others: “If you are not happy with what you are doing, don’t ever think it is too late to make changes in your life in order to be successful and happy!”


Thursday, June 2nd, 2016 Scientist of the Month Comments Off on June SOTM: Kelly Fahrbach

May SOTM: Suzanne Bell

Psychologist helps NASA build teams for mission to Mars

By Kristin Claes Mathews

Sometimes, coworkers just seem to click. They get along, are productive and help each other out of tight spots. That might seem like serendipity, but DePaul University’s Suzanne Bell knows there is a science to building a team that thrives. An industrial organizational psychologist, Suzanne’s research will help NASA build the right team of astronauts to send to Mars.

Suzanne is an associate professor in DePaul’s College of Science and Health and specializes in team composition. Since January 2016, she and her collaborators have been have been collecting data on teams in the Human Exploration Research Analog environment at NASA’s Johnson Space Center. She analyzes how factors like team members’ personality, demographics, values and background can predict the success of a team. Their research on crews in this simulation environment will help NASA predict how a team might function in isolation for long durations in space.

“I develop the science behind identifying the right mix of people for a situation,” said Suzanne. “Future space travel is a really exciting application of this science.”

Applying research for deep-space travel

Psychology first stood out to Suzanne when she was an undergraduate. “I liked the idea of using the scientific method to translate the way people think and behave, turning it into data and analyzing it.” Business and finance were also early education interests, and she said they layered together naturally into her chosen field, which examines how people think and behave in the workplace.

“Industrial organizational psychologists are applied scientists. We balance science and practice, so everything I do needs to have a practical application to it.”

Her work with NASA will help them “get the right people in the right place.” She explained that her specialty, team composition, is an important consideration for optimal performance in almost any team context. Its importance is certainly heightened for deep-space travel.

“On Mars you will have the crew, mission control on a communication delay, and whatever technology support that’s been created. The crew will need to live and work well together. They’ll need to adapt to whatever challenges come their way” she explained.

In her previous research, Suzanne has studied how teams interact in extreme conditions like those deployed to Afghanistan, as well as in more traditional office environments.

Strong mentors

Suzanne earned her master’s and Ph.D. in Industrial & Organizational Psychology from Texas A&M University and her bachelor’s degrees in history and psychology from Olivet Nazarene University.

An advisor in graduate school, Dr. Winfred Arthur, Jr., was a strong mentor to Suzanne. “One of the things I really appreciated was that he not only mentored me to build my expertise in areas he researched, but he also supported me when I wanted to explore areas that were a little bit different from what he studied, or when I wanted to bring in new types of statistical analyses.”

She draws on that experience when mentoring students. “I am always mindful when students are coming from different backgrounds and making sure that I get them in touch with the resources they need.”

Involving girls and young women in the sciences is important to Suzanne. “The NASA project is really great because it’s something tangible and very specific that little girls can hook onto and dream about. It’s really a pleasure to do research like that, inspiring little girls to be astronauts or the scientists who study astronauts.”

Looking forward, Suzanne plans to take a “deeper dive” into team composition and to leave a legacy with her research.

“When I look back on my career, I want to think that I’ve changed the way people think about a topic,” she said. “I want to create theory and research that really helps shift people to think in more team-based ways when they organize work.”

Focus in the lab and on the playground

Outside of the classroom and her lab, Suzanne enjoys being with her two young sons, playing outdoors and exploring the city. “I enjoy gardening and working in the yard. I sit at my desk for way too many hours, so I like to be physical when I’m outside of work.”

Finding work-life balance is all about focus for Suzanne, and she shared a bit of what she has learned:

“Particularly as a woman, there’s so much on our minds all the time: all the things that need to be done to run the lab, or all the things required for kids, if you have them. So my advice would be to focus on whatever you are doing, and do it fully. Don’t worry about the other things until it’s time to worry about them.”

When she is at work, Suzanne becomes fully engrossed in teaching and research, but as soon as she arrives at home, she switches her attention completely to “the home life.” “It’s not always possible to compartmentalize with that, but whenever I can, I do. It helps me feel, at the end of the day, that I am able to do both well.”

To learn more about Suzanne’s research, visit

Friday, May 6th, 2016 Scientist of the Month Comments Off on May SOTM: Suzanne Bell

March SOTM: Dorothy Kozlowski

Dorothy Kozlowski September, 2015By Carol Hughes, MLSt

Neuroscientist Dorothy Kozlowski has been interested in brains since her high school days on the South Side of Chicago. For a science fair project, she used a “primitive EEG machine” to record and analyze readings from friends as they listened to music. The project showed that music her friends preferred resulted in more relaxed EEG patterns than music they didn’t like. The project made it to the Illinois State Science Fair, but more importantly, sparked Dorothy’s interest in neuroscience.

But it was as an undergraduate at Knox College that Dorothy caught the research bug. Initially, a biology major with plans to go into medicine, she had an opportunity to do undergraduate research examining neural development with Professor Heather Hoffman, now Chair of Psychology at Knox. That experience inspired Dorothy to enter the field of psychology and ultimately attend graduate school instead of medical school.

Curiosity about brain plasticity

A turning point in her studies came in grad school when she and others began to explore if the adult brain could change and be plastic, and if so, how. That curiosity and a genuine desire to make her research clinically relevant, directed Dorothy’s research focus to traumatic brain injuries (TBI).

She specifically looked at rats and whether an overuse of their front paw, which was dysfunctional due to an injury to the brain, could make the brain injury worse. Her early findings showed such overuse could indeed adversely impact the brain injury. This influenced the idea that perhaps early rehabilitation after a brain injury or stroke would not be the best approach in patients; instead it could actually result in a worse outcome.

“I always wanted to influence the clinical field, and this research shook up the rehab field and caught the eye of neurologists and physical therapists,” she said.

Research with students at DePaul University

In her lab at DePaul University, where Dorothy is a Vincent de Paul Professor of Biological Sciences, she expanded her TBI research in 2009 with funding from the Department of Defense. Her focus was on examining plasticity and rehabilitation following TBI. At the time, protocols used for TBI rehabilitation were the same as stroke and degenerative diseases, and assumed that the brain following TBI could reorganize just the same as following other insults. Her study examined the plasticity following TBI and attempted to define optimal rehab strategies by testing the efficacy of three commonly used rehabilitation techniques — reaching, exercise and constraints — in rats with controlled, induced TBI.

Testing was complex and time-consuming, including 10 treatment groups, each following different rehabilitation protocols. Eight students — six undergrads and two grads — worked on the project. The results of her research, published recently, showed that a brain with a traumatic injury was different; that the plasticity of brains suffering traumatic injury is decreased compared to what is seen following stroke. Her work also suggested that individuals with TBI might require more intense and varied rehab strategies than individuals with stroke. This has been well received by the clinical rehabilitation community.

Inspiring young researchers

“The way I look at research now has changed,” said Dorothy. “I am viewing research as a teaching tool; to inspire other students to get the research bug.”

Rather than focus on a research finding or to find “drug x,” Dorothy is looking at how her research inspires students to be inquisitive, to ask questions.

When asked for advice for young women entering STEM fields, Dorothy offers three points. ”Work hard, be creative with your ideas, and be good communicators,” she said. “A lot of times when I see people struggle, it is because of gaps in communication, either written or oral.”

As an undergrad, Dorothy didn’t know at the time that there would be bias against women in science. And, as a grad student, her entire lab was women. She hasn’t personally felt the sexism that others report in science, but her counsel for young women entering the field is “to remain confident and be a strong advocate for yourself. Over time you become the expert in your field. Don’t be afraid to own that expertise.”

For the record

Dorothy, a first-generation college student, has a B.A. in psychology from Knox, and an M.A. and Ph.D in psychology from the University of Texas at Austin. She also has completed postdoctoral fellowships in neurosurgery at UCLA and neurobiology at Northwestern University.

She is president of the Chicago Society for Neuroscience. Dorothy also works with the Concussion Legacy Foundation and with her students, provides concussion education programs to middle and high school students in the Chicago area.

Dorothy lives in Willow Springs with her husband and 14-year-old son and 12-year-old daughter. She enjoys spending time with family and friends, cooking and entertaining when her busy schedule permits.

In 2013, Dorothy wrote an op-ed published in the Chicago Tribune titled “Should I let my son play football?” To find out the answer and information about concussions in contact sports, you’ll have to read the op-ed at

Thursday, March 10th, 2016 Scientist of the Month Comments Off on March SOTM: Dorothy Kozlowski